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Nucleon form factors in a relativistic quark model?

Y.B. Donga, A. Faessler, K. Shimizub

Institüt für Theoretische Physik, Universität of Tübingen, 72076 Tübingen, Germany
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Abstract. Electromagnetic form factors of protons and neutrons are investigated based on a relativistic
quark model with the inclusion of a pion cloud. Pseudo-scalar π-quark interaction is employed to study
the coupling between the nucleon and the π. The results show the important role of the pion cloud for the
neutron charge form factor. Moreover, our numerical analysis indicates a difference between the relativistic
and the nonrelativistic treatments.

PACS. 12.39.Jh Nonrelativistic quark model – 12.39.Ki Relativistic quark model – 12.39.Pn Potential
models – 12.40.Vv Vector-meson dominance – 12.40.Yx Hadron mass models and calculations – 13.40.Em
Electric and magnetic moments – 13.40.Gp Electromagnetic form factors – 13.40.Hq Electromagnetic
decays

1 Introduction

For a long time constituent quark models have been em-
ployed to study the mass spectrum, form factors and tran-
sition properties of the nucleon and its resonances [1-2].
Usually constituent quark models are based on a nonrel-
ativistic approach with relativistic corrections up to sec-
ond order v2/c2. Relativistic effects on transition oper-
ators, on configuration mixing of the baryon wave func-
tions caused by QCD inspired hyperfine interaction, and
on form factors of the nucleon, such as axial-vector form
factors, have already been studied in constituent quark
models. The results indicate the necessity to extend the
model to a fully relativistic one [3-4]. In the nonrelativistic
constituent quark model, the effective degrees of freedom
are massive quarks moving in a self-consistent potential
[5] with relativistic corrections. Other degrees of freedom
are not considered in its original version. Recently, data
about the baryon spectrum and certain electromagnetic
properties of the nucleons and its resonances, for exam-
ple the spin structure of the nucleon, the helicity ampli-
tudes to the∆(1232) resonance and the mean square of the
neutron charge radius r2

En, show that although the con-
stituent quark models are successful in explaining many
static properties of the nucleons and the resonances, such
as the magnetic moments of the proton and the neutron,
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and even the nucleon-nucleon interaction [6], other de-
grees of freedom like Goldstone bosons or gluons inside
the nucleon must be included explicitly in order to ex-
plain some specify data. In fact, the experiments for the
nucleon spin structure functions both in the deep inelas-
tic scattering and in the low energy regions have already
proven that hadrons are more complex systems with ad-
ditional degrees of freedom which are not included in the
conventional constituent quark models. Theoretically, the
chiral quark model [7] and cloudy bag model [8-9] with
Goldstone bosons degrees of freedom explicitly in the nu-
cleon wave function are successful to understand the nu-
cleon spin structure and the pion nucleon interaction. It
is expected that more precise experiments to test also
other degrees of freedom of the nucleon will be published
soon [10]. Even at low-momentum transfer, such as in the
real photon limit of the electromagnetic interaction be-
tween the nucleon and the photon, theoretical studies have
shown the remarkable influence of the pion cloud on the
form factors of the proton and the neutron and on the
helicity amplitudes for the electromagnetic transitions be-
tween the nucleon, the ∆(1232) resonance and the Roper
N∗(1440) resonance [9,11-12].

To understand better the nonzero charge form factors
and the nonzero mean square charge radius of the neu-
tron r2

En = −0.119fm2 [13] is still an interesting aim,
even though the contribution from the neutron Pauli form
factor F2 to the neutron mean square charge radius (the
contribution from the Foldy term to the square of the neu-
tron charge radius is 3FN2 (0)/2M2

N = −0.126fm2) almost
coincides with the measured data. A recent analysis by
Isgur [14] indicates that this contribution by the Foldy
term does not really explain the neutron charge radius
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and its charge distribution, because in the leading order
of the relativistic approximation to the constituent quark
model in which the Foldy term first appears, it is canceled
exactly by a contribution to the Dirac form factor F1 of
the neutron [14]. In this sense, the mean square of the
neutron charge radius r2

En can still be interpreted as com-
ing from the charge distribution of the neutron system.
Consequently, the study of the neutron charge distribu-
tion is nontrivial and it reveals vital information on the
structure of the nucleon [14]. In this paper, the relativistic
quark model with the pion degrees of freedom is employed
to calculate the electromagnetic form factors of the proton
and the neutron, in particular the charged form factor and
mean square charged radius of the neutron. The pseudo-
scalar interaction between the quark and pion is used in
order to describe the three quark core and the pion cloud.
We also study the dependence of the physical observables
on the parameters such as the effective quark mass in or-
der to compare with the results of the nonrelativistic con-
stituent quark model.

2 Relativistic quark model

In the followings, we will briefly outline our relativistic
quark model which is similar to the cloudy bag model
[7-9]. The cloudy bag model, which explicitly includes pi-
ons, has been investigated for a long time by Theberge,
Thomas and Miller [8], by Kälbermann and Eisenberg
and by Bermuth, Drechsel, Tialor and Seaborn [9]. In our
model, each quark inside a nucleon is moving indepen-
dently in a mean field of a scalar-vector type harmonic
oscillator confinement potential

VConf =
ac
2

(1 + γ0)r2 = Vs(r) + Vv(r). (1)

Here ac is the strength of the confinement and Vs,v stand
for the scalar and vector confinement potentials, respec-
tively. This form of the confinement potential allows ana-
lytical solutions of the Dirac equation. QCD yields asymp-
totically a linear confinement. But previous work [6] has
shown that as long as the baryons have about the same
radius, their properties do not depend on the radial de-
pendence of the confinement potential, if the confinement
strength is adjusted to reproduce the root mean charge
radius. The single quark wave function can be obtained
by solving the following Dirac equation

(α · p+ γ0(Vconf (r) +mq)− Enl) | ψnl(r) >= 0, (2)

wheremq is the quark mass, n,l =0,1,2,... are radial and or-
bital angular momentum quantum numbers, respectively.
The relations of the energy eigenvalue Enl of the above
Dirac equation (2) to the confinement strength ac and to
the harmonic oscillator constant αnl are

ac =
(Enl −mq)2(Enl +mq)

4(2n+ l + 3/2)2
,

αnl =
√
ac(Enl +mq) =

1
b2nl

, (3)

where bnl is the harmonic oscillator length. The single
quark ground state (n,l=0) wave function is

ψ0s(r) =
(α0s

π

)3/4
(

1 +
E0s −mq

2(E0s +mq)

)−1/2

×
(

i
− α0s
E0s+mq

σ · r
)

exp
(
−α0sr

2

2

)
. (4)

An analytical expression for the single quark wave func-
tion of the Dirac equation(2) is the advantage of the
special scalar-vector harmonic oscillator confinement in
(1) [15]. Unlike for the nonrelativistic harmonic oscilla-
tor model, here the harmonic oscillator constant depends
on the radial and the orbital quantum numbers n, l [15].
However, the eigen-functions of the Dirac equation (2)
are orthonormal to each other for the different quan-
tum numbers n and l. In our numerical calculations, we
have fixed the single quark ground state eigenvalue of (2)
E0s = 540MeV . Then, the strength of the confinement ac
and the harmonic oscillator constant α0s are functions of
the quark mass and can be determined by (3). This equa-
tion implies that an increase of the quark mass enhances
the harmonic oscillator length b0s = 1/

√
α0s for the single

quark wave function and decreases the harmonic oscilla-
tor constant α0s and the strength of the confinement ac
accordingly. These results also indicate that a decrease of
the confinement strength can be compensated by an in-
crease of the quark mass mq if the energy eigenvalue E0s of
a single quark is unchanged. As a result of these changes,
the nucleon gets a larger radius and the harmonic oscilla-
tor length is enlarged simultaneously. It should be men-
tioned that in the constituent quark model, the harmonic
oscillator length and the effective quark mass are usually
selected to be about 0.5fm and 313MeV, respectively. If
we choose these two parameters for the Dirac equation in
our relativistic quark model, then for the eigenvalue of the
single quark of (2) we get a value E0S = 752MeV from
(3).

We first treat the nucleon as a three-quark bound state.
Then, the Hamiltonian of the system is the sum of three
single quark Hamiltonians. As a result, the equation for
the total system is similar to the Breit equation [16], which
has the correct Dirac limit. The proton and the neutron
wave functions are in the simplest approach: the product
of the three individual single quark wave functions. How-
ever, the center of mass motion should be removed. For
this purpose, we use the Peierls-Yoccoz method which was
also employed by Tegen, Brockmann and Weise (see [15]).
In this approach one projects on a good total momentum
P . It should be mentioned that there are several other ap-
proximate treatments to remove the center of mass motion
in a relativistic approach [17]. For example the simplified
Peierls-Thouless method which recently was employed by
Lu, Thomas and Williams [18]. Both methods of [15, 18]
can only approximately remove the center of mass motion
in a relativistic many-body system [17]. A detailed analy-
sis of the different approaches for the removal of the center
of mass motion is given in our recent work [19]. After re-
moving the center of mass motion of the three quark wave
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function, we can express it as

ΨBP (r1, r2, r3) =
NB(P )
(2π)9

×
∫
d3p1d

3p2d
3p3e

ip1·r1+ip2·r2+ip3·r3

×ΨBP (p1,p2,p3), (5)

where P = p1+p2+p3 is the total three momentum of the
three-quark core and NB(P ) is a normalization constant
for the baryon B. In a relativistic approach the intrinsic
three-body wave function in [15] and in (5) and the nor-
malization constant NB depend on the total momentum
P and on the method to remove the center of mass mo-
tion within a relativistic quark model with a self-consistent
potential. If one projects always on the total momentum
zero and then boosts the wave function to the center of
mass momentum P with the above method, one obtains
a slightly different intrinsic wave function than when one
projects immediately on the total momentum P . Thus one
gets different values for the root mean square radius and
the magnetic moment for the nucleon in the two cases. In
the latter case (direct projection on P ) the limits of the
total momentum P to zero for the form factors and other
observables yield different values than, if one projects im-
mediately to P = 0. This differences reflect the fact that
one is not able to remove the center of mass motion in a
completely covariant way from a relativistic many body
wave function involving a common potential.

In (5), ΨBP (p1,p2,p3) is the three-quark core wave
function inside the baryon B in momentum space. For the
nucleon, all three quarks are in the ground state. It is

ΨNP (p1,p2,p3;α0s) = (2π)3δ3(p1 + p2 + p3 − P )
×ψ0s(p1)ψ0s(p2)ψ0s(p3), (6)

where ψ0s(pi) is the Fourier transformation of the single
particle ground state wave function in coordinate space
ψ0s(p) =

∫
ψ0s(r)e−ip·rd3r. The flavor part of the nu-

cleon wave function is the same as the one in the nonrel-
ativistic case. In (6) we project the nucleon wave func-
tion to the total momentum P . It should be stressed
that the total energy of the nucleon is 3E0s

q = 1620MeV
before the center of mass motion is removed. It is thus
much larger than the averaged nucleon and ∆(1232) mass
M = (MN + M∆) = 1085MeV . However, if one removes
the center of mass motion, the total energy in the center
of mass frame of the nucleon P = 0 will decreases to 2E0s

(see [15]). The wave function shown in (5) or (6) is the in-
trinsic wave function of the nucleon. In our approach (as
in any relativistic approach with the common potential)
the center of mass motion of the nucleon is only approxi-
mately removed in the wave function (5) or (6) due to the
small component of the Dirac spinor in (4).

It is obvious that the kinetic energy and the contribu-
tion from the confinement decrease with increasing single
quark effective mass. In the limit of mq = 0, the nucleon
mass mainly originates from the kinetic energy and the
confinement potential. When the quark mass is enlarged

to around mq ' MN/3 = 313MeV , the kinetic energy
and the confinement potential decrease, however, they still
contribute around 30% to the nucleon rest mass. This con-
clusion differs from the nonrelativistic constituent quark
model, because in it the effective constituent quark mass
is mq ∼ MN/3, the nucleon mass is mainly the sum of
the three effective constituent quark masses and the nu-
cleon is only weakly bound. This is due to the fact that
in a relativistic approach the scalar quantity (for example
the mass term in the relativistic representation) is always
smaller than the one in the nonrelativistic case. That is
because of the small component in the relativistic Dirac
wave function. Moreover, if we select the same parameters
for the effective quark mass and the harmonic oscillator
length b as in the nonrelativistic constituent quark model,
namely mq = 313MeV and b = 0.5fm, then in our model
the single quark energy will be enlarged to 752MeV and
the total nucleon mass at the rest will be 1500MeV even
after the center of mass motion is removed. This feature
is largely the cause of the discrepancy between the rela-
tivistic and the nonrelativistic approaches.

3 Inclusion of the meson cloud

To consider the effects of the pion cloud on the electro-
magnetic form factors of the proton and the neutron, we
start from the following quark and pion Lagrangian

Ltotal = Lq + Lπ, (7)

where

Lq =
i

2
ψ̄(r)γµ

↔
∂ µ ψ(r)− ψ̄(r)[Vconf (r) +mq]ψ(r) (8)

Lπ =
1
2

(∂µφπ(r))2 − 1
2
m2
πφ

2
π(r),

where φπ is pion field. After a chiral transformation of the
quark field ψ(r)

ψ(r)→ ψ(r)− iγ5
τ · π
2fπ

ψ(r), (9)

we get the pseudo-scalar pion-quark interaction

Lqqπ =
i

fπ
ψ̄(r)γ5(Vs(r) +mq)τψ(r) · φπ(r), (10)

where fπ = 93MeV is the pion decay constant, and

φπ(r) =
∫

d3k

[2ωk(2π)3]1/2
[a(k)eik·r + a+(k)e−ik·r]. (11)

In (11) ωk and k are the energy and the three momen-
tum of the pion, respectively. In our previous calculations
for the properties of the nucleon and the ∆(1232) reso-
nance [12], it has been proven that this pion quark inter-
action Lqqπ can give a good description for the empiri-
cal nucleon pion coupling constant. In (8), we explicitly
include the pion and quark masses in our Lagrangian.
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The physical pion mass mπ = 140MeV is small com-
pared to the hadronic scale of around 1GeV. The pion
mass has the important relation to the current quark
mass [20-21] m2

πf
2
π = −1

2 (mu + md) < qq̄ > (where
< qq̄ >=< uū > + < dd̄ > is the vacuum expectation
value of quark pairs: quark condensete [20-21]). More-
over, the pion mass mπ = 140MeV relates to the four-
divergence of the total axial current Aµ(x) due to quarks
and pions as

∂µA
µ(x) = −fπm2

πφπ(x), (12)

Thus, the four-divergence of the total axial-vector current
Aµ(x) is not conserved. This is the PCAC relation [20-21].
In soft pion limit mπ → 0, the four-divergence implies a
conserved axial current.

To include the effects of the pion cloud in the electro-
magnetic interaction of the nucleon, we perform a min-
imal substitution in (8). The additional electromagnetic
current describes the photon-pion coupling is

jµπγ = ie[φ+
π+(r)∂µφπ+(r)− φπ+(r)∂µφ+

π+(r)], (13)

where φπ+ = 1√
2
[φ1(π)+iφ2(π)], either destroys a negative

or creates a positive charged pion. Thus, the electromag-
netic field interacts with the total current:

Jµ = jµqγ + jµπγ . (14)

In (14) jµqγ is usual “impulse” current, which leads to the
quark-photon coupling

jµqγ =
∑
i

eiΨ
+γ0(i)γµ(i) exp(iq · ri)Ψ, (15)

where q is the photon three momentum. After inclusion
of the pion cloud, the total wave functions for the proton
and the neutron can be re-written in an extend Fock space

| B̃ >= ZB2 [| ΨB > +
∑

B′=N,∆

CBB
′ | (ΨB′π)B >], (16)

where ZB2 is a renormalization constant for the baryon res-
onance B, and B’ is restricted in this work to be only N
and ∆(1232) resonances for the intermediate states like in
the cloudy bag model [8-9]. For the intermediate state, we
take pion as a Goldstone boson and antisymmetrize the
wave functions of the baryons (, this means of the nucle-
ons and ∆ resonances, respectively). One can easily find
from the above expression for the nucleon wave function
(16) that the charge distribution inside a neutron differs
from the one in the three-quark core, because in the sec-
ond term of (16), the charged pions also contribute to
the neutron wave function. As a result the mean square
of the neutron charge radius is nonzero. The probabil-
ity of the pion-baryon admixture to the wave function of
the nucleon | CBB′ |2 can be calculated simply by using
perturbation theory as shown in [22-23]. Moreover, the
detailed calculation for the meson cloud and the renor-
malization constant in (16) in the extended Fock space

with one pion in the cloud is described in [8,22-23]. In our
calculation, we simply use 938MeV and 1232MeV for the
masses of the nucleon and the ∆ resonance in the baryon-
pion sector | (ΨB

′
π)B >. In this way, the probability of

the component of | ∆π > is suppressed compared to that
of | Nπ > because of the energy denominator. Since we fo-
cus on the electromagnetic form factor of the nucleon, we
do not consider any contribution from one-gluon exchange
interaction and do not specify the splitting between the
∆(1232) and nucleon in this work. In the nonrelativistic
constituent quark model, the mass splitting between the
nucleon and the ∆ comes mainly from the spin dependent
part of the one-gluon and one pion exchanges. The discus-
sion for the mass splitting between the nucleon and ∆ due
to the pion cloud is given in [24] by cloudy bag model.

Figures 1-4 display our calculated results for the pro-
ton and the neutron electric and magnetic form factors in
the Breit frame when the effective quark mass is chosen
mq = 0. In Figs. 1-4, the data are quoted from [25-31].
In Fig. 5, we show the diagrams which we include in our
calculation for the quark core and the pion cloud. Fig-
ure 5a is the impulse coupling between the quark and the
photon without a pion cloud. Figure 5b stands for the in-
terference between the parts of the wave function of the
nucleon describing the pion cloud and the three quarks.
Figure 5c represents the pion-photon coupling. Figures 5b
and 5c contain both the pion exchange between two differ-
ent quarks and the pion cloud of a single quark. In Table 1,
we list our calculated results for the mean square radii of
the proton and the neutron charge distributions and the
magnetic moments of the proton and the neutron, respec-
tively. In the table, three sets of results for different quark
masses mq = 0, 150MeV and 300MeV are listed. We also
display separately each contribution of the three diagrams
in Fig. 5 in order to see their effects more explicitly.

4 Conclusions

The results presented here are based on a relativistic con-
stituent quark model with the pion cloud included ex-
plicitly. In our calculation, the eigenvalue for single quark
Dirac (2) is fixed to be E0s = 540MeV in order to get
roughly the correct experimental averaged nucleon and
∆(1232) mass. The relativistic calculation of this work
are different from the nonrelativistic approach. The dif-
ference originates from the adjusted effective parameters,
such as the effective quark mass and the harmonic oscilla-
tor length b0s. In the nonrelativistic approach, these two
parameters are favored to be about MN/3 = 313MeV
and 0.5fm. However, these values of the parameters are
not applicable in our relativistic approach, because the
corresponding eigenvalue for single quark is 752MeV and
the predicted nucleon mass in the center of nucleon mass
frame is more than 1700MeV. On the other hand, if we
fix the eigenvalue of the Dirac (2) for the single quark to
be E0s = 540MeV and select the effective quark mass
mq = 350MeV , the harmonic oscillator length for the
single wave function derived from this value (3) is about
0.83fm. This value is not optimal to describe the nucleon
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Table 1. Physical observables for the proton and for the neutron calculated in our model after re-normalization (E0s =

540MeV ). The quark masses mq, mean square radii < r2
Ep,En >, root mean square radius

√
< r2

Ep > and magnetic moments

µp,n are in units of MeV, fm2, fm and nuclear magnetons µN , respectively. The observables are given for three different quark
masses mq. The contributions of the diagrams in Figs. 5a (impulse approximation), 5b (interference between 3q and pion) and
5c (pion contribution) are shown separately

mq < r2
Ep >

√
< r2

Ep > < r2
En > µp µn

[MeV] [fm2] [fm] [fm2] [e~/(2MNc)] [e~/(2MNc)]

Fig. 5a 0 0.469 0 2.044 -1.362
Fig. 5b 0.0687 0.0412 0.101 -0.0773
Fig. 5c 0.137 -0.137 0.346 -0.346
Total 0.685 0.827 -0.0958 2.491 -1.785

Fig. 5a 150 0.441 0 1.767 -1.178
Fig. 5b 0.0822 0.0403 0.129 -0.0689
Fig. 5c 0.128 -0.128 0.376 -0.375
Total 0.651 0.807 -0.0877 2.272 -1.622

Fig. 5a 300 0.522 0 1.568 -1.045
Fig. 5b 0.0929 0.0518 0.0998 -0.0669
Fig. 5c 0.139 -0.139 0.387 -0.387
Total 0.754 0.868 -0.0872 2.055 -1.499

Expt. Data 0.847± 0.008[30] −0.113± 0.005[13] 2.7928[35] −1.913[35]

0 0.25 0.5 0.75 1
q

2
(GeV

2
)

0

0.5

1

1.5

G
p E

(q
2 )

Fig. 1. The electric form factor of the pro-
ton. The dot-dashed, the dotted, the dashed
and the solid curves are the contributions of
Figs. 5a, 5b, 5c and the total result after
renormalization. The experimental points are
from [25] (circles), [26] (squares) and [27] (di-
amonds), respectively

electromagnetic form factors. In our calculations, we fa-
vor therefore a vanishing (or smaller) quark mass. Then,
the nucleon rest mass is determined by the contributions
from the confinement and the kinetic energy. This descrip-
tion also differs from the nonrelativistic constituent quark
model, because in that model, the largest part of the nu-
cleon mass originates from the effective constituent quark
mass and the nucleon is regarded as a loosely bound state.
The difference for the origin of the nucleon mass in the two
approaches leads also to other distinction between the rel-
ativistic and the nonrelativistic models.

The proton electromagnetic form factors shown in
Figs. 1 and 2 (for mq = 0) are based on our relativistic
quark model including a pion cloud. We describe nicely
the proton electric and magnetic form factors without in-
troducing any additional phenomenological mechanisms.
In the nonrelativistic constituent quark model, since the
harmonic oscillator length b is around b=0.5fm, the cal-
culated root mean square radius of the charge distribu-
tion of the proton is smaller than the experiment data√
< r2

Ep > = 0.847 ± 0.008fm [32]. To improve the con-
stituent quark model, some other mechanisms are in-



208 Y.B. Dong et al.: Nucleon form factors in a relativistic quark model

0 0.25 0.5 0.75 1
q

2
(GeV 

2
)

0

1

2

3

G
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(q
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Fig. 2. The magnetic form factor of the pro-
ton. The dot-dashed, the dotted, the dashed
and the solid curves are the contributions of
Figs. 5a, 5b , 5c and the total result after
renormalization. The experimental data are
from [25] (circles), [26] (squares) and [27] (di-
amonds), respectively

0 0.2 0.4 0.6 0.8 1
q

2
(GeV

2
)

-0.1

0

0.1

0.2

G
n E

(q
2 )

Fig. 3. The Electric form factor of the neu-
tron. The dot-dashed, the dotted and the solid
curves are the contributions of Figs. 5b, 5c
and the total result after renormalization. The
contribution for Fig. 5a is zero. The data are
from [28] (circles) [29] (squares), and [30] (di-
amonds), respectively

cluded. For example, the phenomenological mono-pole
form factor Fqγ(q2) = 1/(1+ 1

6q
2r2
qγ) (where r2

qγ ' 6/m2
ρ)

which simulates the electromagnetic size of the constituent
quarks [33], or the contributions from the two-body ex-
change currents [34]. The calculation shown in table 1 in-
dicates that our model can explain the proton root mean
square charge radius reasonable well. The contributions of
the diagrams shown in Figs. 5a, 5b and 5c to the observ-
able < r2

Ep > are 0.469fm2, 0.0687fm2 and 0.137fm2

after renormalization. Consequentially, the value for the
root mean square charge radius is

√
< r2

Ep > = 0.827fm.
Moreover, the contributions to the magnetic moment by

the diagrams in Figs. 5a, 5b and 5c are 2.044µN , 0.101µN
and 0.346µN (where, µN = e~/2MNc is nuclear magne-
ton) after renormalization. The total value obtained for
the proton magnetic moment of our model is 2.491µN ,
which is also in agreement with experiment 2.7928µN [35].
We find from our calculation that in the low energy re-
gion the pion clouds play an important role for the the
proton form factors. However, the pion cloud effects de-
crease with increasing photon three momentum | q |. In
addition, we also see that the magnetic moments are re-
duced when increasing effective quark mass. Because in
the relativistic model an increase of mq means an increase
of the harmonic oscillator length (see Sect. 2) if the single
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Fig. 4. The magnetic form factor of the
neutron. The dotted-dashed, the dotted, the
dashed and the solid curves are the contribu-
tions of Figs. 5a, 5b, 6c and the total result
after renormalization. The data are from [25]
(circles), [27] (squares) and [31] (diamonds),
respectively

π

γ γ γ γ

B'

B

B
Fig. 5. Illustration of the diagrams we con-
sider in our calculation

quark energy E0s is unchanged. Thus, the relativistic cal-
culation cannot give the same proton magnetic moment
as the nonrelativistic model with the same quark mass
mq = 350MeV .

In our calculation for the electromagnetic form fac-
tors of the neutron, we get a nonzero value for the mean
square neutron charge radius < r2

En >. In fact, Fig. 5a
does not contribute to this physical observable as usual.
Our calculation shows that the neutron charge form fac-
tor in Fig. 3 are the sum of the diagrams in Figs. 5b
and 5c. This is because in the extended Fock space,
the neutron wave function has an admixture of a pion-
baryon contribution. The charge pion is responsible for
the charge distribution of the neutron. The contribution
from Fig. 5b to < r2

En > is positive, whiles the contri-
bution from Fig. 5c is negative. When mq = 0 as shown
in Figs. 3 and 4, the cancelation between the contribu-
tions from Fig. 5b (< r2

En >= 0.0412fm2) and Fig. 5c
(< r2

En >= −0.137fm2) gives the total charge distribu-
tion of the neutron as shown in Fig. 3. The total mean
square charge radius of the neutron is −0.0958fm2 which
is shown in table 1 too. This value is consistent with the
data −0.113±0.005fm2 [13]. Figures 3 and 4 indicate the
importance of the pion cloud in the low energy region. For
the magnetic moment of the neutron, the three contribu-
tions of Figs. 5a, 5b and 5c at mq = 0 are −1.362µN ,
−0.0773µN and −0.346µN , respectively. The total calcu-
lated value for the neutron magnetic moment is therefore
−1.785µN which is also in agreement with experimental
µn = −1.9130µN [36]. Finally we found that an increase

of the quark mass decreases the size of the neutron mean
square radius r2

En slightly.

In conclusion we can describe well the proton and the
neutron magnetic moments, the electromagnetic form fac-
tors, the charge radius of the proton and in particular of
the neutron. Our results are consistent with the cloudy
bag model [11] and other interpretation of the neutron
charge distribution with the pion in the literature [34]. We
have only two free parameters in our calculation: the quark
mass and the eigenvalue of the single quark Dirac (2)
E0s. Our results show difference between the relativistic
and the nonrelativistic approaches, because the usual pa-
rameters selected by the nonrelativistic constituent quark
model are not applicable to our relativistic frame work.
Moreover, we confirm the important contributions of the
pion cloud for the mean square charge radius of the neu-
tron. The pion could manifests itself especially in observ-
ables for low energies. The successful descriptions of pro-
ton and neutron properties and of the electromagnetic
transitions to the ∆(1232) [12] resonance suggests that
further investigations for the nucleon spin structure, for
transitions of other resonances with the relativistic model
are worthwhile.
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